Product Name:8-(azepan-1-yl)-1,3-dimethyl-7-{2-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]ethyl}-2,3,6,7-tetrahydro-1H-purine-2,6-dione

IUPAC Name:8-(azepan-1-yl)-1,3-dimethyl-7-{2-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]ethyl}-2,3,6,7-tetrahydro-1H-purine-2,6-dione

CAS:685860-78-0
Molecular Formula:C18H25N7O2S2
Purity:95%+
Catalog Number:CM909070
Molecular Weight:435.57

Packing Unit Available Stock Price($) Quantity

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:685860-78-0
Molecular Formula:C18H25N7O2S2
Melting Point:-
Smiles Code:CN1C2=C(N(CCSC3=NN=C(C)S3)C(=N2)N2CCCCCC2)C(=O)N(C)C1=O
Density:
Catalog Number:CM909070
Molecular Weight:435.57
Boiling Point:
MDL No:
Storage:

Category Infos

Purines
Purines are heterocyclic aromatic compounds composed of linked pyrimidine and imidazole rings. In mammals, purines are most commonly expressed in DNA and RNA (including the purines adenine and guanine), as well as single-molecule nucleotides (adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic AMP, and to a lesser extent guanosine triphosphate (GTP) and cyclic guanosine monophosphate (cGMP). Purines are also key elements of the following energy metabolism molecules: reduced nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate (NADPH), and coenzyme Q. Purines can also act as direct neurotransmitters; for example, adenosine may interact with receptors to modulate cardiovascular and central nervous system (CNS) function.
purine wholesale
Find trusted purine wholesaler. Any requirements and problems can ask us at any time.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.
Azepanes
The use of azepane as a scaffold for drug discovery remains of interest. The azepane linker is the key to efficient activity. A number of seven-membered ring derivatives have been prepared or investigated for their potential or actual pharmacological properties. Examples include azaalkane derivatives as PKB (protein kinase B) inhibitors.