Product Name:MePTC

IUPAC Name:7,18-dimethyl-7,18-diazaheptacyclo[14.6.2.2²,⁵.0³,¹².0⁴,⁹.0¹³,²³.0²⁰,²⁴]hexacosa-1(22),2,4,9,11,13,15,20,23,25-decaene-6,8,17,19-tetrone

CAS:5521-31-3
Molecular Formula:C26H14N2O4
Purity:95%
Catalog Number:CM186406
Molecular Weight:418.41

Packing Unit Available Stock Price($) Quantity
CM186406-25g in stock ȷƋDz
CM186406-100g in stock ȌȦȦ

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:5521-31-3
Molecular Formula:C26H14N2O4
Melting Point:-
Smiles Code:O=C1N(C(C2=CC=C(C3=C4C=CC1=C23)C5=CC=C6C(N(C(C7=CC=C4C5=C76)=O)C)=O)=O)C
Density:
Catalog Number:CM186406
Molecular Weight:418.41
Boiling Point:
MDL No:MFCD00071975
Storage:

Category Infos

Solar Cell Materials
Solar Cell Materials refers to the materials used in the construction and functioning of solar cells. These materials play a crucial role in converting sunlight into electrical energy through the photovoltaic effect. Some common solar cell materials include: perovskite-based solar cells (PSCs) materials, dye-sensitized solar cells (DSSCs) materials, organic photovoltaic (OPV) materials. It's important to note that ongoing research and development in solar cell materials aim to improve efficiency, reduce costs, and explore new alternatives for sustainable energy generation.
Organic Photovoltaic (OPV)
Organic Photovoltaic (OPV) refers to a type of solar cell technology that utilizes organic materials to convert sunlight into electricity. Unlike traditional photovoltaic cells, which are typically made of inorganic semiconductors like silicon, OPV uses organic molecules or polymers as the active material. This technology is more suitable for large-scale power generation, as organic semiconductors are a less expensive alternative to inorganic semiconductors.
Organic Photodiode (OPD)
The most common type of organic photodetector is the organic photodiode (OPD). The photodiode has a simple structure in which an active layer is sandwiched between a transparent electrode and a metal electrode. In contrast to OLEDs, organic photodiodes (OPDs) utilize the organic semiconductor to absorb incident light and convert it to electric current. The structure and working principle are more like organic solar cells. Among the various organic photodetectors, organic photodiodes (OPDs) have been the most widely studied due to their fast response, high sensitivity, and full use of the existing research base of organic photovoltaics (OPVs).