Product Name:5-Bromo-6-fluoro-1-methyl-1H-indazole

IUPAC Name:5-bromo-6-fluoro-1-methyl-1H-indazole

CAS:1185767-06-9
Molecular Formula:C8H6BrFN2
Purity:97%
Catalog Number:CM233829
Molecular Weight:229.05

Packing Unit Available Stock Price($) Quantity
CM233829-100mg in stock ǜǜ
CM233829-250mg in stock ȐũȐ
CM233829-10g in stock ȡƿƿƿ

For R&D use only.

Inquiry Form

   refresh    

Product Details

CAS NO:1185767-06-9
Molecular Formula:C8H6BrFN2
Melting Point:-
Smiles Code:CN1N=CC2=C1C=C(F)C(Br)=C2
Density:
Catalog Number:CM233829
Molecular Weight:229.05
Boiling Point:
MDL No:
Storage:

Category Infos

Indazoles
Indazoles are a class of organic heterocyclic compounds, also known as 1,2-diazaindene and benzopyrazole. Indazole is a good bioisomer of phenol, which is more lipophilic than phenol and less prone to phase I and II metabolism. Indazole derivatives have a wide range of biological activities, and it has been confirmed that indazole compounds have anti-tumor, analgesic, anti-inflammatory and other drug activities. Anticancer is the most important application field of indazole drugs. Renal cell carcinoma, solid tumor, nausea and vomiting caused by chemotherapy and leukemia are the main indications of this structural backbone drug.

Related Products



Product Other Information

Product Overview 5-Bromo-6-fluoro-1-methyl-1H-indazole (5-Br-6-F-1-Me-1H-Indazole) is a heterocyclic compound with a wide range of applications in scientific research. It is a member of the indazole family of compounds, which are known for their unique properties and potential for use in a variety of biochemical and physiological studies.
Synthesis and Application 5-Br-6-F-1-Me-1H-Indazole can be synthesized using a variety of methods. The most common method is the Buchwald-Hartwig cross-coupling reaction, which involves the reaction of an aryl bromide with an aryl fluoride in the presence of a palladium catalyst. This method is often used to synthesize indazole compounds due to its high yield and low cost. Other methods of synthesis include the Stille reaction, which involves the reaction of an aryl bromide with an aryl stannane in the presence of a palladium catalyst. Both of these methods are widely used in the synthesis of indazole compounds. 5-Br-6-F-1-Me-1H-Indazole has a wide range of applications in scientific research. It has been used in studies of enzyme inhibition, drug delivery, and molecular imaging. In addition, it has been used to study the structure and function of proteins, as well as to develop new drug compounds. It has also been used in studies of cancer and other diseases, as well as in studies of the effects of environmental pollutants on human health.
Future Directions There are a number of potential future directions for 5-Br-6-F-1-Me-1H-Indazole research. These include further research into its mechanism of action and its effects on enzymes, receptors, and proteins; further studies of its effects on drug metabolism and nutrient absorption; and development of new compounds based on its structure. In addition, further research into its potential uses in drug delivery, molecular imaging, and cancer research could be beneficial.